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Fig. 13. E-wave scattering far-field pattern for dielectric circular cylinder in
the case where E-wave incidents along x-am in the negative .r-direction. (a).,
Amplitude. (b) Phase.
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Fig. 14. The electric-field distribution around the dielectric circular cyhnder.

FORTRAN program on a microcomputer, whose main CPU is
MC68000 (8 MHz) and whose operating system is the UCSD
p-system. Typically, the case of a parallel-plane waveguide having
40 nodes took about 20 m of CPU time.

VII. CONCLUSIONS

Application of the boundary-element method to electromag-
netic-field problems was proposed, Several analyzing procedures
for interesting cases were also given. The results obtained show
that the boundary-element method is a very powerful numerical
method for electromagnetic-field problems. Namely, by using the
boundary-element method, far fewer nodes than by the finite-ele-
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ment method bring good accuracy, and unbounded field prob-
lems can be treated without any additional technique.
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Optimum Design of a Potentially Dispersion-Free

Helical Slovv-Wave Circuit of a Broad-Band TWT

B. N, BASU, B. B, PAL, V. N. SINGH, ANDN. C. VAIDYA

Abstract —Tfte results of an equivalent circuit analysis are studied for a

~tentially dispersion-free slow-wave circuit of a TWT which consists of a

dielectric-supported helix in a metaf shell provided with vanes. The opti-

mum vane dimensions are predicted, which should be helpful in broadband-

ing the performance of a TWT.

I. INTRODUCTION

With the advent of multi-octave-band traveling-wave tubes
(TWT’S), the study of dispersion shaping in the slow-wave struc-
tures of such tubes has become important [1]–[3]. In the case of a
tube having a metaf shell, dispersion can be reduced by placing
the shell very close to the helix, but this will reduce the interac-
tion impedance ccmsiderably. An alternative method would be to
use a shell provided with metal vanes projected radially inward
[1], [2]. In this case, the shell can be placed farther from the helix
with the metal vanes allowed to approach the helix. The desired
flat dispersion characteristics may be obtained by optimizing the
radial dimension of the vanes.

In this paper, we present an optimum design curve relating the
vane dimension and the location of the metal shell with respect to
the helix, for different values of the helix wire radius. The curve is
obtained by studying the dispersion relation of the circuit which
can be derived using an equivalent circuit analysis.
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II. EQUIVALENTCIRCUIT PARAMETERSAND THE
DISPERSIONRELATION

The analysis is carried out in the simple sheath-helix model.
However, in order to add practical relevance to the problem, the
effect of the finite thickness of the helix wire is taken into
consideration. For real wire helices, the inner diameter of the
dielectric support is considered to be a wire’s diameter (thickness)
larger than the mean helix diameter [4]. The system of supports
for the helix considered here is a number of identical longitudinal
dielectric wedge bars symmetrically arranged around the helix.
Such a system of supports for the helix can be replaced by a
dielectric tube of an effective relative permittivity interpreted in
terms of the relative permittivity and dimensions of the support
[5]. Thus, the mathematical model resolves down to that of a
sheath helix surrounded by two tubes, one of relative permittivity
unity corresponding to the free-space gap between the helix and
the beginning of the dielectric, representing half the finite wire
thickness of the helix [4], and the other of effective relative
permittivity interpreted as above. Such a two-tube problem can
be studied easily as a special case of a more general problem of a
helix surrounded by any number of dielectric tubes [6].

As for the effect of a metal shell provided with radial vanes, it
may be noted, since these vanes perturb only the longitudinal
electric field, the inductance per unit length L of the line is
unaffected by the presence of these vanes, but the capacitance per
unit length C is modified as if the shell has no vanes but is
brought closer to the helix at the position occupied by the tips of
the vanes. This interpretation of line parameters is essentially
based on the assumption that there are enough vanes so that the
boundary formed by their tips is essentially an axially conducting
cylindrical sheath which will effectively screen the longitudinal
electric field but not the azimuthal electric field; the latter will be
screened only by the overall metal shell [1].

Once the expressions for L and C have been obtained, these

can be substituted in the transmission-line equation 52 = 02LC,

where ~ is the axial propagation constant, to obtain the following
expression for the dispersion relation:

where ~ is the pitch angle of the helix and D the dielectric

loading factor of the structure given by

[ 1
1+~O.G/(KOaH)1/2

D=
1 – lldKl, /( KlallC)

where

G= [(1+ (6 N)(c, -1)/(27r))(l + llhOKob/’(K1,OIOh))

-(l- lohOKOh/(Ko,O1o, ))] KO,OK1,O

‘=–(l+(eN)(cr –1)/(2n))10bOKlb0

(1+ Ko,I,,o/(&,,zo,))

– ~lbOKobO(l – 10hOKOb/( ‘obo~ob ))

where

1., = Il,(yr) modified Bessel function of order v(O,1) of
the first kind,

KU, = Kv(yr) modified Bessel function of order v(O, 1) of

the second kind,
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Fig. 1. Dispersion cuwes: k cot $/y, a quantity proportional to phase veloc-
ity versus yu, a quantity proportional to frequency, for different vafues of
the vane dimension (h/a) and typical values of the shell-to-helix radnrs ratio
(c/a) and the helix wme radms (s) (O= 20° and c,= 6.65 (Beryllia)).
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Fig. 2. Optimum vane dimension ((b/a) opt) versus shell to helix radius
ratio (c/a) for different values of hehx wire radius (s).

y= (/3– k2)l/2
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radial propagation constant,
free-space propagation constant,
radial coordinate,
sheath helix radius = mean helix radius,
radius of the inner edge of the dielectric
wedge bars,
radial coordinates of the tips of the vanes
and the metal shell, respectively, and
relative permittivit y of the dielectric-support
material, wedge angle of the wedge-bin- sup-

port, and number of supports, respectively.

III. NUMERICAL I@SULTS AND DISCUSSION

Fig. 1 shows the effect of varying the radial dimension of the

vanes (b/a ) on the dispersion characteristics, for a typical loca-

tion of the shell (c/a), and for a typical separations ( = b. – a),

between the mean position of the helix and the supports, repre-
senting half the thickness of the helix wire [4].

It may be seen from Fig. 1 that there exists an optimum
vane-dimension (b/a) .Pt which would correspond to fairly dis-
persion-free characteristics. By studying similar plots for other
various vahtes of c/a and s (not shown here), we found that, in

general, the flatness of these curves is reduced with the increase

of the helix wire thickness. Fig. 2 shows the dependence of the
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optimum vane dimension on the location of the metal shell and

the effect of the wire thickness thereupon.

Finally, it is of interest to make a comparison between the

structures, with and without vanes, in respect of impedance of the

circuit. For numerical appreciation, takings = O, N = 3, C, = 6.65
(beryllia), f3= 20°, c/a = 2.5, the optimum vane dimension corre-

sponding to flat dispersion curves is obtained as (b/a) ~Pt= 1.7,
for the structure with vanes (Fig. 2). For the vaneless structure,
all other parameters remaining unc~anged, flat dispersion char-

acteristics result only when the shell is brought relatively close to
the helix, to an optimum value; in this case, for (c/a) .Pt =
1.25 [7]. Taking these optimized situations, and ya = 1.6, the

normalized characteristic impedances of the circuit,
27r(L’/c)l/2(po/fo) .112 tm ~, with ~d without vanes, come

out to be 0.22 and 0.13, respectively.
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Magnetostatic Forward Volume Wave

Propagation-Finite Width

I. J. WEINBERG AND J. C. SETHARES, SENIORMEMBER,lEEE

Abstract —The irtfinite radiation resistance [1] encountered at the low

end of the magnetostatic forward volume wave frequency band for a YIG

layer of finite width is avoided by employing a physically justifiable low

frequency cutoff value higher than that for which radiation resistance would

be infinite. Radiation reactance and insertion loss then can be calculated

and are found to be relatively insensitive to the choice of the cutoff

frequency, except for frequencies very close to cutoff. Beam spreading

considerations determine the cutoff ~requency.

By considering Maxwell’s equations with the magnetostatic

approximation and the permeability tensor in the YIG region [2]

(1)

one obtains the potential fupction, in non-YIG regions, in the
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Fig. 1. Transducer geometry.

form

$ ‘~~me-’k”Xcos ~z(Aez’+ Be-z~’) dk, n = 0,1,2,3 . . .

(2)

where k is the wave number in the x direction, [1 is the strip
width (Fig. 1), n represents the width mode and

~={k2+(n~/11)2, n = 0,1,2,3, . . . . (3)

The components {of ~ are found from the derivative of $. For
n = O, we have the infinite width case. For odd n, the potentiaf
vanishes at the strip ends z = ~ (l/2.

For the YIG region, the potential function is taken from the
basic equations to be in the form

* = J~ e-,k., cos~z(Acosa&+ llsina~y) dk,
–Ce 1

n =0,1,2,3,..

where, for forward volume waves [3]

“=[”(l’YE:JI

and

y = 2,8 MHz/oe, M=1750 oe, ~= u/2w

and H is the biasing field magnitude.

(4)

(5)

(6)

Considering the case of no ground planes, we determine the
constants in (2) and (4) for the three regions (Fig. 1) by requiring
~ to be finite at y = ~ m, by to be continuous at y = O and
y = – d, h, to be continuous at y = – d and, for a given current
distribution

h ;L,ll–hX1l=.L(x), aty=O. (7)

Application of boundary conditions yields the dispersion relation
(see [3, eq. 17])

[(<x2 -l)sina~d-2acosa~d] =0 (8)

or

2a
z=-&r-l-

az-l+~’
m = 0,1,2,3 . . . . (9)

There are an infinite number of thickness solution modes,
corresponding to the value of m, with m = O giving the funda-
mental mode:

By utilizing (8) and integrating (7) in the x direction, – cc to
m, in the usual manner and integrating in the z direction, – 1,/2
to 11/2, we obtain all constants in (2) and (4). Appropriate
prernultiple factors are used in these integrations.
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